South East Asian J. Math. & Math. Sc. Vol.2 No.1(2003), pp.75-80

PROBLEMS ON FUNCTIONS OF BOUNDED BOUNDARY AND RADIAL ROTATIONS

Susheel Chandra

Department of Applied Sciences M. M. M. Engineering College, Gorakhpur-273010, India

(Received: August 29, 2003; Submitted by R.C. Srivastava)

Abstract: Coefficient problems related to the functions of bounded boundary and radial rotaions in the unit disc have been obtained.

Keywords and Phrases: Bounded variation, starlike, convex, close-to-convex

1. Introduction

Let $BV[0, 2\pi]$ be the class of all real valued functions and of bounded variations in $[0, 2\pi]$. We denote V_k , the set of functions,

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

which are regular in $D = \{z : |z| < 1\}$ and satisfy

$$f'(z) = \exp\left\{\frac{1}{\pi} \int_0^{2\pi} \log(1 - ze^{-it})^{-1} du(t)\right\}$$
 (1.2)

where $u(t) \in BV[0, 2\pi]$ with

$$\int_0^{2\pi} du(t) = 2\pi, \quad \int_0^{2\pi} |du(t)| \le k\pi \tag{1.3}$$

Similarly, we denote R_k , the class of functions f(z) of the form (1.1) which are regular in D and satisfy

$$f(z) = z \exp\left\{\frac{1}{\pi} \int_0^{2\pi} \log(1 - ze^{-it})^{-1} du(t)\right\}$$
 (1.4)

where $u(t) \in BV[0, 2\pi]$ and satisfies (1.3).

Goodman [1] and Umezava [4] have defined multivalently convex, starlike and close-to-convex functions which are regular in D.